Search results for "non-local elasticity"

showing 10 items of 19 documents

A generalized model of elastic foundation based on long-range interactions: Integral and fractional model

2009

The common models of elastic foundations are provided by supposing that they are composed by elastic columns with some interactions between them, such as contact forces that yield a differential equation involving gradients of the displacement field. In this paper, a new model of elastic foundation is proposed introducing into the constitutive equation of the foundation body forces depending on the relative vertical displacements and on a distance-decaying function ruling the amount of interactions. Different choices of the distance-decaying function correspond to different kind of interactions and foundation behavior. The use of an exponential distance-decaying function yields an integro-d…

Body forceNon-local elasticityElastic foundationsDifferential equationConstitutive equationFractional calculuElastic foundationMaterials Science(all)Long-range forcesLong-range forceModelling and SimulationGeneral Materials ScienceMathematicsApplied MathematicsMechanical EngineeringMathematical analysisFractional calculusFunction (mathematics)Condensed Matter PhysicsIntegral equationFractional calculusExponential functionMejier-G functionsGradient modelsMechanics of MaterialsModeling and SimulationDisplacement fieldGradient modelSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Non-local finite element method for the analysis of elastic continuum with long-range central interactions.

2009

In this paper the Finite Element Method (FEM) for the mechanically-based non-local elastic continuum model is proposed. In such a model non-adjacent elements are considered mutually interacting by means of central body forces that are monotonically decreasing with their interdistance and proportional to the product of the interacting volume elements. The resulting governing equation is an integro-differential one and for such a model both kinematical and mechanical boundary conditions are exactly coincident with the classical boundary conditions of the continuum mechanics. The solution of the integro-differential problem is framed in the paper by the finite element method. Finally, the solu…

Non-local elasticityfinite element methodlong-range interactionSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Fractional mechanical model for the dynamics of non-local continuum

2009

In this chapter, fractional calculus has been used to account for long-range interactions between material particles. Cohesive forces have been assumed decaying with inverse power law of the absolute distance that yields, as limiting case, an ordinary, fractional differential equation. It is shown that the proposed mathematical formulation is related to a discrete, point-spring model that includes non-local interactions by non-adjacent particles with linear springs with distance-decaying stiffness. Boundary conditions associated to the model coalesce with the well-known kinematic and static constraints and they do not run into divergent behavior. Dynamic analysis has been conducted and both…

PhysicsContinuum (measurement)Mathematical analysisStiffnessNatural frequencyKinematicsNon-local elasticity Fractional calculus modes of vibration and dynamics of non-local baricarNon localFractional calculusLinear continuummedicineBoundary value problemmedicine.symptomSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct

Non-local stiffness and damping models for shear-deformable beams

2013

This paper presents the dynamics of a non-local Timoshenko beam. The key assumption involves modeling non-local effects as long-range volume forces and moments mutually exerted by non-adjacent beam segments, that contribute to the equilibrium of any beam segment along with the classical local stress resultants. Elastic and viscous long-range volume forces/moments are endowed in the model. They are built as linearly depending on the product of the volumes of the interacting beam segments and on generalized measures of their relative motion, based on the pure deformation modes of the beam. Attenuation functions governing the space decay of the non-local effects are introduced. Numerical resul…

PhysicsTimoshenko beam theoryNon-local elasticityMechanical EngineeringAttenuationRelative motionGeneral Physics and AstronomyStiffnessMechanicsNon localTimoshenko beamNon-local dampingLong-range interactionClassical mechanicsShear (geology)Mechanics of MaterialsStress resultantsmedicineGeneral Materials Sciencemedicine.symptomSettore ICAR/08 - Scienza Delle CostruzioniBeam (structure)European Journal of Mechanics - A/Solids
researchProduct

Non-Local Thermoelasticity: The Fractional Heat conduction

2011

Fractional Calculus Non-local Elasticity Thermal Stress
researchProduct

Elastic waves propagation in 1D fractional non-local continuum

2008

Aim of this paper is the study of waves propagation in a fractional, non-local 1D elastic continuum. The non-local effects are modeled introducing long-range central body interactions applied to the centroids of the infinitesimal volume elements of the continuum. These non-local interactions are proportional to a proper attenuation function and to the relative displacements between non-adjacent elements. It is shown that, assuming a power-law attenuation function, the governing equation of the elastic waves in the unbounded domain, is ruled by a Marchaud-type fractional differential equation. Wave propagation in bounded domain instead involves only the integral part of the Marchaud fraction…

PhysicsNon-local elasticityContinuum mechanicsWave propagationDifferential equationMathematical analysisCondensed Matter PhysicsFractional calculuDispersion of elastic waves; Lattice models; Long-range interactions; Non-local elasticity; Fractional calculus; Fractional power lawPower lawAtomic and Molecular Physics and OpticsElectronic Optical and Magnetic MaterialsFractional calculusLattice modelLove waveLong-range interactionIngenieurwissenschaftenDispersion of elastic waveBounded functionddc:620Settore ICAR/08 - Scienza Delle CostruzioniLongitudinal waveFractional power law
researchProduct

One-dimensional heterogeneous solids with uncertain elastic modulus in presence of long-range interactions: Interval versus stochastic analysis

2013

The analysis of one-dimensional non-local elastic solids with uncertain Young's modulus is addressed. Non-local effects are represented as long-range central body forces between non-adjacent volume elements. For comparison purpose, the fluctuating elastic modulus of the material is modeled following both a probabilistic and a non-probabilistic approach. To this aim, a novel definition of the interval field concept, able to limit the overestimation affecting ordinary interval analysis, is introduced. Approximate closed-form expressions are derived for the bounds of the interval displacement field as well as for the mean-value and variance of the stochastic response.

Body forcedecompositionRandom fieldNon-local elasticityStochastic processMechanical EngineeringMathematical analysisKarhunen-Loeve decompositionModulusInterval (mathematics)Karhunen–LoèveComputer Science ApplicationsInterval arithmeticResponse statisticsNon-local elasticity; Interval field; Random field; Karhunen–Loève; decomposition; Upper bound and lower bound; Response statisticsModeling and SimulationDisplacement fieldRandom fieldGeneral Materials ScienceInterval fieldUpper bound and lower boundSettore ICAR/08 - Scienza Delle CostruzioniElastic modulusCivil and Structural EngineeringMathematics
researchProduct

Fractional differential calculus for 3D mechanically based non-local elasticity

2011

This paper aims to formulate the three-dimensional (3D) problem of non-local elasticity in terms of fractional differential operators. The non-local continuum is framed in the context of the mechanically based non-local elasticity established by the authors in a previous study; Non-local interactions are expressed in terms of central body forces depending on the relative displacement between non-adjacent volume elements as well as on the product of interacting volumes. The non-local, long-range interactions are assumed to be proportional to a power-law decaying function of the interaction distance. It is shown that, as far as an unbounded domain is considered, the elastic equilibrium proble…

Non-local elasticityCentral marchaud fractional derivativeComputer Networks and CommunicationsComputational MechanicsTime-scale calculusElasticity (physics)Non localFractional calculusLong-range interactionControl and Systems EngineeringCalculusFractional differentialSettore ICAR/08 - Scienza Delle CostruzioniFractional differential calculuFractional finite differenceMathematics
researchProduct

Long-range interactions in 1D heterogeneous solids with uncertainty

2013

Abstract In this paper, the authors aim to analyze the response of a one-dimensional non-local elastic solid with uncertain Young's modulus. The non-local effects are represented as long-range central body forces between non-adjacent volume elements. Following a non-probabilistic approach, the fluctuating elastic modulus of the material is modeled as an interval field. The analysis is conducted resorting to a novel formulation that confines the overestimation effect involved in interval models. Approximate closed-form expressions are derived for the bounds of the interval displacement field.

Body forceNon-local elasticityField (physics)non-local elasticity; long-range interactions; interval field; upper bound and lower bound.Mathematical analysisModulusGeneral MedicineInterval (mathematics)Upper and lower boundsLong-range interactionLong-range interactionsInterval field; Long-range interactions; Non-local elasticity; Upper bound and lower boundDisplacement fieldRange (statistics)Interval fieldUpper bound and lower boundSettore ICAR/08 - Scienza Delle CostruzioniElastic modulusMathematics
researchProduct

An explicit mechanical interpretation of Eringen non-local elasticity by means of fractional calculus

2009

If the attenuation function of strain is expressed as a power law, the formalism of fractional calculus may be used to handle Eringen non-local elastic model. Aim of the present paper is to provide a mechanical interpretation to this non-local fractional elastic model by showing that it is equivalent to a discrete, point-spring model. A one-dimensional geometry is considered; static, kinematic and constitutive equations as well as the proper boundary conditions are derived and discussed.

fractional calculuNon-local elasticitypoint-spring modelsSettore ICAR/08 - Scienza Delle Costruzioni
researchProduct